Accelerators#
Union allows you to specify requests and limits for the number of GPUs available for a given task. However, in some cases, you may want to be more specific about the type of GPU to be used.
You can use the accelerator
parameter to specify specific GPU types.
Union Serverless comes with three GPU types available:
Pricing for these GPUs can found on the Union Pricing page.
NVIDIA T4 Tensor Core GPU#
The NVIDIA T4 Tensor Core GPU is the default.
To use it for a task, specify the number of GPUs required in the limits
parameter:
@task(
limits=Resources(gpu="1")
)
def my_task():
...
Or, you can explicitly specify the accelerator
parameter as follows:
@task(
limits=Resources(gpu="1"),
accelerator=GPUAccelerator("nvidia-tesla-t4")
)
def my_task():
...
NVIDIA L4 Tensor Core GPU#
To use the NVIDIA L4 Tensor Core GPU for a task, you must specify the number of GPUs required in the limits
parameter, and also specify the accelerator
parameter as follows:
from flytekit.extras.accelerators import L4
@task(
requests=Resources(gpu="1"),
accelerator=L4,
)
def my_task():
...
NVIDIA A100 GPU#
To use the NVIDIA A100 GPU for a task you must specify the number of GPUs required in the limits
parameter, and also specify the accelerator
parameter as follows:
@task(
requests=Resources(gpu="1"),
accelerator=GPUAccelerator("nvidia-tesla-a100"),
)
def my_task():
...