Video Generation with Mochi#

This tutorial demonstrates how to run the Mochi 1 text-to-video generation model by Genmo on Union.

Overview#

Mochi 1 is an open-source 10-billion parameter diffusion model built on the Asymmetric Diffusion Transformer (AsymmDiT) architecture. The Mochi model can be run on both single- and multi-GPU setups. It is recommended to run the model on an H100 GPU, but quantized versions supported by HuggingFace diffusers allow for running the model with a minimum of 22GB VRAM.

Let’s begin by importing the necessary dependencies:

Run on Union BYOC

Once you have a Union account, install union:

pip install union

Export the following environment variable to build and push images to your own container registry:

# replace with your registry name
export IMAGE_SPEC_REGISTRY="<your-container-registry>"

Then run the following commands to run the workflow:

git clone https://github.com/unionai/unionai-examples
cd mochi_video_generation
union run --remote mochi_video_generation.py genmo_video_generation_with_actor

The source code for this tutorial can be found here .

from dataclasses import dataclass
from pathlib import Path
import flytekit as fl
from dataclasses_json import dataclass_json
from flytekit import FlyteContextManager
from flytekit.extras.accelerators import A100
from flytekit.types.directory import FlyteDirectory
from flytekit.types.file import FlyteFile
from union.actor import ActorEnvironment

We also define a dataclass to provide the prompt and the necessary params to be used while generating the videos.

@dataclass_json
@dataclass
class VideoGen:
    prompt: str
    negative_prompt: str = ""
    num_frames: int = 19

Defining image specifications#

Here, we define two image specifications for the workflow:

  1. The first image installs CUDA and is used for video generation. We’re using a pre-release version of Diffusers since Mochi is available in this version.

  2. The second image is used to download the model and run the dynamic workflow that processes the prompts.

image = fl.ImageSpec(
    name="genmo",
    packages=[
        "torch==2.5.1",
        "git+https://github.com/huggingface/diffusers.git@805aa93789fe9c95dd8d5a3ceac100d33f584ec7",
        "git+https://github.com/flyteorg/flytekit.git@650efe4425c799eaf66384575cc0e67521e9a851",  # PR: https://github.com/flyteorg/flytekit/pull/2931
        "transformers==4.46.3",
        "accelerate==1.1.1",
        "sentencepiece==0.2.0",
        "opencv-python==4.10.0.84",
    ],
    conda_channels=["nvidia"],
    conda_packages=[
        "cuda=12.1.0",
        "cuda-nvcc",
        "cuda-version=12.1.0",
        "cuda-command-line-tools=12.1.0",
    ],
    apt_packages=["git", "libglib2.0-0", "libsm6", "libxrender1", "libxext6"],
)
image_with_no_cuda = fl.ImageSpec(
    name="genmo-no-cuda",
    packages=[
        "huggingface-hub==0.26.2",
        "git+https://github.com/flyteorg/flytekit.git@650efe4425c799eaf66384575cc0e67521e9a851",  # PR: https://github.com/flyteorg/flytekit/pull/2931
        "diffusers==0.31.0",
    ],
    apt_packages=["git"],
)

Defining an actor environment#

The actor environment is used to retain the downloaded model across all actor executions. We set the accelerator to A100 and the replica count to 1 to avoid downloading the model multiple times.

actor = ActorEnvironment(
    name="genmo-video-generation",
    replica_count=1,
    ttl_seconds=900,
    requests=fl.Resources(gpu="1", mem="100Gi"),
    container_image=image,
    accelerator=A100,
)

Downloading the model#

The download step ensures that the model is cached and doesn’t need to be downloaded from the HuggingFace hub every time this execution runs.

@fl.task(
    cache=True,
    cache_version="0.1",
    requests=fl.Resources(cpu="5", mem="45Gi"),  
    container_image=image_with_no_cuda,
)
def download_model(repo_id: str) -> FlyteDirectory:
    from huggingface_hub import snapshot_download

    ctx = fl.current_context()
    working_dir = Path(ctx.working_directory)
    cached_model_dir = working_dir / "cached_model"

    snapshot_download(repo_id=repo_id, local_dir=cached_model_dir)
    return FlyteDirectory(path=cached_model_dir)

Defining an actor task#

We define an actor task to generate a video using the Mochi 1 model. The model is downloaded once to a hard-coded path and used for every prompt. In the future, we plan to allow avoiding model initialization and loading onto a GPU every time.

enable_model_cpu_offload offloads the model to CPU using accelerate, reducing memory usage with minimal performance impact. enable_vae_tiling saves a large amount of memory and allows processing larger images.

@actor.task
def genmo_video_generation(model_dir: FlyteDirectory, param_set: VideoGen) -> FlyteFile:
    import torch
    from diffusers import MochiPipeline
    from diffusers.utils import export_to_video

    local_path = Path("/tmp/genmo_mochi_model")

    if not local_path.exists():
        print("Model doesn't exist")
        ctx = FlyteContextManager.current_context()
        ctx.file_access.get_data(
            remote_path=model_dir.remote_source,
            local_path=local_path,
            is_multipart=True,
        )

    pipe = MochiPipeline.from_pretrained(
        local_path, variant="bf16", torch_dtype=torch.bfloat16
    )

    pipe.enable_model_cpu_offload()
    pipe.enable_vae_tiling()

    frames = pipe(
        param_set.prompt,
        negative_prompt=param_set.negative_prompt,
        num_frames=param_set.num_frames,
    ).frames[0]

    ctx = fl.current_context()
    working_dir = Path(ctx.working_directory)
    video_file = working_dir / "video.mp4"
    export_to_video(frames, video_file, fps=30)

    return FlyteFile(path=video_file)

Defining a dynamic workflow#

We define a dynamic workflow to loop through the prompts and parameters. It calls the actor task to generate the video.

@fl.dynamic(container_image=image_with_no_cuda)
def generate_videos(
    model_dir: FlyteDirectory, video_gen_params: list[VideoGen]
) -> list[FlyteFile]:
    videos = []
    for param_set in video_gen_params:
        videos.append(genmo_video_generation(model_dir=model_dir, param_set=param_set))
    return videos

Defining a workflow#

With all tasks in place, we define a workflow to generate videos. Initialize VideoGen objects to specify the prompt, number of frames, and a negative prompt.

@fl.workflow
def genmo_video_generation_with_actor(
    repo_id: str = "genmo/mochi-1-preview",
    video_gen_params: list[VideoGen] = [
        VideoGen(
            prompt="A hand with delicate fingers picks up a bright yellow lemon from a wooden bowl filled with lemons and sprigs of mint against a peach-colored background. The hand gently tosses the lemon up and catches it, showcasing its smooth texture. A beige string bag sits beside the bowl, adding a rustic touch to the scene. Additional lemons, one halved, are scattered around the base of the bowl. The even lighting enhances the vibrant colors and creates a fresh, inviting atmosphere.",
        ),
        VideoGen(
            prompt="Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k.",
            num_frames=84,
        ),
    ],
) -> list[FlyteFile]:
    model_dir = download_model(repo_id=repo_id)
    return generate_videos(model_dir=model_dir, video_gen_params=video_gen_params)