Forecasting with GluonTS & PyTorch on GPUs#
In this tutorial, we learn how to train and evaluate a time series forecasting model with GluonTS on GPUs. We’ll train a DeepAR modal, an auto-regressive deep network that produces probabilistic forecasts. On Union, we show how to easily request for an A100, specify dependencies for this workflow, and visualize our results with Flyte Deck.
Run on Union BYOC
Once you have a Union account, install union
:
pip install union flytekitplugins-envd
Export the following environment variable to build and push images to your own container registry:
# replace with your registry name
export IMAGE_SPEC_REGISTRY="<your-container-registry>"
Then run the following commands to run the workflow:
git clone https://github.com/unionai/unionai-examples
cd unionai-examples/tutorials/gluonts_time_series
union run --remote gluonts_time_series.py gluonts_wf
The source code for this tutorial can be found here .
Managing Dependencies#
First, let’s import the workflow dependencies:
import os
from pathlib import Path
from flytekit import task, Resources, current_context, workflow, Deck, ImageSpec
from flytekit.types.directory import FlyteDirectory
from flytekit.types.file import FlyteFile
from flytekit.extras.accelerators import A100, L4
We use Flytekit’s ImageSpec
to specify our Python dependencies as a list of packages
.
We’ll use gluonts
which uses PyTorch Lightning for training and matplotlib
for
visualizations.
gluon_image = ImageSpec(
"gluon-time-series",
packages=[
"torch==2.3.1",
"gluonts[torch]==0.15.1",
"matplotlib==3.9.1",
"orjson==3.10.6",
"union",
"pandas==2.2.2",
],
registry=os.environ.get("IMAGE_SPEC_REGISTRY"),
)
Download our time series dataset#
First, we download the m4_hourly
dataset and cache it, so we can reuse the data
in sequential task without re downloading it every time:
@task(container_image=gluon_image, requests=Resources(cpu="2", mem="6Gi"))
def download_m4_hourly_dataset() -> FlyteFile:
from gluonts.dataset.repository import get_dataset
working_dir = Path(current_context().working_directory)
dataset_path = working_dir / "dataset_path"
dataset_path.mkdir(exist_ok=True)
get_dataset("m4_hourly", path=dataset_path)
dataset_compressed = working_dir / "dataset_path.tar.gz"
_compress(dataset_path, dataset_compressed)
return dataset_compressed
Training DeepAR on A100#
For our model training task, we use flytekit's
@task
decorator to configure the
hardware and image used to train our model. With requests=Resources(gpu="1")
and
accelerator=A00
, we declare the hardware require to train out deep learning
forecasting model. The body of the function is training code from DeepAR’s
quick start tutorial.
The task returns a FlyteDirectory
containing the serialized predictor model.
@task(
container_image=gluon_image,
requests=Resources(gpu="1", cpu="2", mem="6Gi"),
accelerator=A100,
)
def train_predictor(dataset: FlyteFile) -> FlyteDirectory:
from gluonts.dataset.repository import get_dataset
from gluonts.torch import DeepAREstimator
dataset.download()
working_dir = Path(current_context().working_directory)
dataset_path = working_dir / "dataset"
_decompress(dataset.path, dataset_path)
dataset = get_dataset("m4_hourly", path=dataset_path)
model = DeepAREstimator(
prediction_length=dataset.metadata.prediction_length,
freq="h",
trainer_kwargs={"max_epochs": 5},
)
predictor = model.train(dataset.train)
ctx = current_context()
working_dir = Path(ctx.working_directory)
predictor_path = working_dir / "predictor"
predictor_path.mkdir(exist_ok=True)
predictor.serialize(predictor_path)
return predictor_path
Forecasting and Evaluating Model#
For computing forecast, we declare a L4
GPU as our accelerator and a specific amount
of CPU and memory. We also pass in enable_deck=True
to visualize our evaluation
in a Flyte Deck.
@task(
container_image=gluon_image,
requests=Resources(gpu="1", cpu="4", mem="4Gi"),
accelerator=L4,
enable_deck=True,
)
def compute_forecasts(dataset: FlyteFile, predictor_directory: FlyteDirectory):
from gluonts.dataset.repository import get_dataset
from gluonts.torch.model.predictor import PyTorchPredictor
from gluonts.evaluation import make_evaluation_predictions
from gluonts.evaluation import Evaluator
import pandas as pd
# Download input data
dataset.download()
working_dir = Path(current_context().working_directory)
dataset_path = working_dir / "dataset"
_decompress(dataset.path, dataset_path)
dataset = get_dataset("m4_hourly", path=dataset_path)
predictor_directory.download()
predictor = PyTorchPredictor.deserialize(Path(predictor_directory))
# Create forecast
forecast_it, ts_it = make_evaluation_predictions(
dataset=dataset.test,
predictor=predictor,
num_samples=100,
)
forecasts = list(forecast_it)
tss = list(ts_it)
ts_entry = tss[0]
forecast_entry = forecasts[0]
# Plot forecast
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(8, 6))
ax.plot(ts_entry[-150:].to_timestamp())
ax.tick_params(axis="x", rotation=30)
forecast_entry.plot(show_label=True, ax=ax)
fig.legend()
ctx = current_context()
forecast_deck = Deck("Forecast", _fig_to_html(fig))
ctx.decks.insert(0, forecast_deck)
# Evaluate
evaluator = Evaluator(quantiles=[0.1, 0.5, 0.9])
agg_metrics, _ = evaluator(tss, forecasts)
agg_df = pd.DataFrame.from_dict(agg_metrics, orient="index")
agg_df.columns = ["metric values"]
metrics_deck = Deck("Metrics", agg_df.to_html())
ctx.decks.insert(1, metrics_deck)
Complete Workflow#
Finally, we define the workflow that calls train_predictor
and passes it’s output
to compute_forecasts
. We run the workflow by:
union run --remote gluonts_time_series.py gluonts_wf
@workflow
def gluonts_wf() -> FlyteDirectory:
dataset = download_m4_hourly_dataset()
predictor_directory = train_predictor(dataset=dataset)
compute_forecasts(dataset=dataset, predictor_directory=predictor_directory)
return predictor_directory
Appendix#
The following are helper functions used by our Flyte tasks. We include functions to convert a matplotlib figure to HTML, decompress and compress a directory.
def _fig_to_html(fig) -> str:
"""Convert matplotlib figure to HTML."""
import io
import base64
fig_bytes = io.BytesIO()
fig.savefig(fig_bytes, format="jpg")
fig_bytes.seek(0)
image_base64 = base64.b64encode(fig_bytes.read()).decode()
return f'<img src="data:image/png;base64,{image_base64}" alt="Rendered Image" />'
def _decompress(src: Path, dest: Path):
"""Decompress src into dest."""
import tarfile
with tarfile.open(src, "r:gz") as tar:
tar.extractall(path=dest)
def _compress(src: Path, dest: Path):
"""Compress src into dest."""
import tarfile
with tarfile.open(dest, "w:gz") as tar:
for file in src.rglob("*"):
tar.add(file, arcname=file.relative_to(src))