Sentiment Classification with Language Models#

This tutorial demonstrates how to fine-tune a pre-trained language model to classify the sentiment of IMDB movie reviews. We’re going to use the transformers library and the imdb dataset to classify the movie review sentiment.

Run on Union BYOC

Run this example on Union BYOC.

Create an account

Once you have a Union account, install 'union[byoc]'

pip install 'union[byoc]' flytekitplugins-envd

Export the following environment variable to build and push images to your own container registry:

# replace with your registry name
export IMAGE_SPEC_REGISTRY="<your-container-registry>"

Then run the following commands to run the workflow:

git clone https://github.com/unionai/unionai-examples
cd unionai-examples
union run --remote tutorials/sentiment_classifier/sentiment_classifier.py main --model distilbert-base-uncased

The source code for this tutorial can be found here .

Overview#

The power of language models lies in their flexibility – as long as you operate in the same token space as a pre-trained model, you can leverage the patterns learned from a much wider data distribution than you could learn from just a small data domain.

In this example, we’re going to fine-tune the DistilBERT model on the IMDB dataset to classify the sentiment of movie reviews.

We’ll start by importing the workflow dependencies:

from pathlib import Path
import tarfile
import os
from flytekit import task, workflow, current_context, ImageSpec, Secret, Resources
from flytekit.extras import accelerators
from flytekit.types.directory import FlyteDirectory
from flytekit.types.file import FlyteFile

Defining the container image#

We’ll define the container image that will be used to run the workflow with the ImageSpec object:

image_spec = ImageSpec(
    packages=[
        "accelerate==0.30.1",
        "datasets==2.19.2",
        "numpy==1.26.4",
        "transformers==4.41.2",
        "wandb==0.17.0",
        "torch==2.0.1",
    ],
    cuda="11.8",
    registry=os.environ.get("IMAGE_SPEC_REGISTRY"),
)

We’ve pinned the versions of the package dependencies to ensure reproducibility. Under the hood, Union will build the container image so we don’t have to worry about writing a Dockerfile.

Downloading the dataset and model#

Next, we download the dataset. Specifying cache=True in the @task definition makes sure that we don’t waste compute resources downloading the data multiple times:

@task(
    container_image=image_spec,
    cache=True,
    cache_version="v8",
    requests=Resources(cpu="2", mem="2Gi"),
)
def download_dataset() -> FlyteDirectory:
    """Download and pre-cache the IMDB dataset."""
    from datasets import load_dataset

    working_dir = Path(current_context().working_directory)
    dataset_cache_dir = working_dir / "dataset_cache"
    load_dataset("imdb", cache_dir=dataset_cache_dir)

    return dataset_cache_dir

Then we’ll do the same for the model:

@task(
    container_image=image_spec,
    cache=True,
    cache_version="v8",
    requests=Resources(cpu="2", mem="2Gi"),
)
def download_model(model: str) -> FlyteDirectory:
    """Download and pre-cache the model weights."""
    from transformers import AutoTokenizer, AutoModelForSequenceClassification

    working_dir = Path(current_context().working_directory)
    model_cache_dir = working_dir / "model_cache"

    AutoTokenizer.from_pretrained(model, cache_dir=model_cache_dir)
    AutoModelForSequenceClassification.from_pretrained(model, cache_dir=model_cache_dir)
    return model_cache_dir

Fine-tuning the model#

Now we’re ready to fine-tune the model using the dataset and model from the previous steps. The task below does the following:

  1. Loads the dataset and model.

  2. Tokenizes the dataset.

  3. Initializes a weights and biases session to track the training process.

  4. Trains the model based on the number of epochs (n_epochs) specified.

  5. Compresses the model to a tarfile and saves it to the specified path.

@task(
    container_image=image_spec,
    secret_requests=[Secret(key="wandb_api_key")],
    requests=Resources(cpu="2", mem="12Gi", gpu="1"),
    accelerator=accelerators.T4,
)
def train_model(
    model_name: str,
    n_epochs: int,
    wandb_project: str,
    model_cache_dir: FlyteDirectory,
    dataset_cache_dir: FlyteDirectory,
) -> tuple[str, FlyteFile]:
    """Train a sentiment classifier using the imdb dataset."""
    from datasets import load_dataset
    import numpy as np
    import torch

    import wandb
    from transformers import (
        AutoTokenizer,
        AutoModelForSequenceClassification,
        TrainingArguments,
        Trainer,
        pipeline,
    )

    ctx = current_context()
    working_dir = Path(ctx.working_directory)
    train_dir = working_dir / "models"

    # load the dataset and model
    dataset = load_dataset("imdb", cache_dir=dataset_cache_dir)
    tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=model_cache_dir)
    model = AutoModelForSequenceClassification.from_pretrained(
        model_name,
        num_labels=2,
        id2label={0: "NEGATIVE", 1: "POSITIVE"},
        label2id={"NEGATIVE": 0, "POSITIVE": 1},
        cache_dir=model_cache_dir,
    )

    if torch.cuda.is_available():
        model = model.to("cuda")

    def tokenizer_function(examples):
        return tokenizer(examples["text"], padding="max_length", truncation=True)

    # Use a small subset such that finetuning completes
    small_train_dataset = (
        dataset["train"].shuffle(seed=42).select(range(500)).map(tokenizer_function)
    )
    small_eval_dataset = (
        dataset["test"].shuffle(seed=42).select(range(100)).map(tokenizer_function)
    )

    # define evaluation metric
    def compute_metrics(eval_pred):
        logits, labels = eval_pred
        predictions = np.argmax(logits, axis=-1)
        return {"accuracy": np.mean(predictions == labels)}

    # set wandb environment variables
    os.environ["WANDB_API_KEY"] = ctx.secrets.get(key="wandb_api_key")
    os.environ["WANDB_WATCH"] = "false"
    os.environ["WANDB_LOG_MODEL"] = "end"

    run = wandb.init(project=wandb_project, save_code=True, tags=[model_name])

    training_args = TrainingArguments(
        output_dir=train_dir,
        evaluation_strategy="epoch",
        num_train_epochs=n_epochs,
        report_to="wandb",
        logging_steps=50,
    )

    # start training
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=small_train_dataset,
        eval_dataset=small_eval_dataset,
        compute_metrics=compute_metrics,
    )
    trainer.train()
    wandb.finish()

    # save the inference pipeline
    wandb_url = run.get_url()
    inference_path = working_dir / "inference_pipe"
    inference_pipe = pipeline("text-classification", tokenizer=tokenizer, model=model)
    inference_pipe.save_pretrained(inference_path)

    # compress the inference pipeline
    inference_path_compressed = working_dir / "inference_pipe.tar.gz"
    with tarfile.open(inference_path_compressed, "w:gz") as tar:
        tar.add(inference_path, arcname="")

    return wandb_url, inference_path_compressed

Creating the workflow#

We can put all of these tasks together into a workflow:

@workflow
def main(
    model: str = "distilbert-base-uncased",
    wandb_project: str = "unionai-serverless-demo",
    n_epochs: int = 30,
) -> tuple[str, FlyteFile]:
    """IMDB sentiment classifier workflow."""
    dataset_cache_dir = download_dataset()
    model_cache_dir = download_model(model=model)
    return train_model(
        model_name=model,
        n_epochs=n_epochs,
        wandb_project=wandb_project,
        model_cache_dir=model_cache_dir,
        dataset_cache_dir=dataset_cache_dir,
    )

Each task is actually running in its own container, but Union takes care of storing the intermediate outputs and passing them between tasks.

Trying out different models#

Now that you’ve run the fine-tuning workflow once, you can try out different models by passing in a different model name to the model argument, which can be supplied to the --model flag when you invoke unionai run. For example, you can try out the google-bert/bert-base-uncased model, or any text classification model available on HuggingFace hub.