Google BigQuery agent example#

This example shows how to use a BigQueryTask to execute a query.

import pandas as pd
from flytekit import StructuredDataset, kwtypes, task, workflow
from flytekitplugins.bigquery import BigQueryConfig, BigQueryTask
from typing_extensions import Annotated

This is the world’s simplest query. Note that in order for registration to work properly, you’ll need to give your BigQuery task a name that’s unique across your project/domain for your Union deployment.

bigquery_task_no_io = BigQueryTask(
    name="sql.bigquery.no_io",
    inputs={},
    query_template="SELECT 1",
    task_config=BigQueryConfig(ProjectID="flyte"),
)


@workflow
def no_io_wf():
    return bigquery_task_no_io()

Of course, in real world applications, we are usually more interested in using BigQuery to query a dataset. In this case we use crypto_dogecoin data, which is a public dataset in BigQuery here.

Let’s look out how we can parameterize our query to filter results for a specific transaction version, provided as a user input specifying a version.

DogeCoinDataset = Annotated[StructuredDataset, kwtypes(hash=str, size=int, block_number=int)]

bigquery_task_templatized_query = BigQueryTask(
    name="sql.bigquery.w_io",
    # Define inputs as well as their types that can be used to customize the query.
    inputs=kwtypes(version=int),
    output_structured_dataset_type=DogeCoinDataset,
    task_config=BigQueryConfig(ProjectID="flyte"),
    query_template="SELECT * FROM `bigquery-public-data.crypto_dogecoin.transactions` WHERE version = @version LIMIT 10;",
)

The StructuredDataset transformer can convert query result to a pandas dataframe here. We can also change pandas.datafram" to pyarrow.Table, and convert the result to an Arrow table.

@task
def convert_bq_table_to_pandas_dataframe(sd: DogeCoinDataset) -> pd.DataFrame:
    return sd.open(pd.DataFrame).all()


@workflow
def full_bigquery_wf(version: int) -> pd.DataFrame:
    sd = bigquery_task_templatized_query(version=version)
    return convert_bq_table_to_pandas_dataframe(sd=sd)

You can check the query result on the BigQuery console.